THE RING CLOSURE AND REARRANGEMENT OF 1-(2-AMINO)-BENZOYL-1-METHYLHYDRAZONES OF β -DICARBONYL COMPOUNDS: ON THE FORMATION AND CRYSTAL STRUCTURE OF 3a, 9a-DIHYDRO--1, 3, 3a, 9a-TETRAMETHYL-4H-PYRAZOLO[3, 4-b]QUINOLIN-4-ONE

Melinda Gál^{*}, Ödön Fehér, Endre Tihanyi, Gyula Horváth and Gyula Jerkovich Institute for Drug Research, H-1325-Budapest, P.O.B. 82., Hungary,

Gyula Argay and Alajos Kalmán*

Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B., 17., Hungary

The conversion of 1-(2-amino)-benzoyl-1-methylhydrazones of β -dicarbonyl compounds into heterocyclic derivatives yielded in addition to the already known type of product $\frac{2}{2}$ further three novel pyrazole derivatives 3, 4 and 5. The structures of these products have been established by chemical and spectroscopic (MS) methods. The crystal structure of 5 has been determined by X-ray diffraction.

Our original aim of converting 1-(2-amino)-benzoyl-1-methylhydrazones of β -dicarbonyl compounds <u>1</u> into a nine-membered 1,5,6-benzotriazonin-7-one ring system (*via* ring closure) has failed so far. Instead, depending on the procedure applied (reaction media, temperature) and the substituent R (H for <u>1a</u>¹, mp²: 409-411 K, Me for <u>1b</u>, mp: 415-421 K) the following four pyrazole derivatives were obtained: <u>2</u>(mp: 423-425 K), <u>3</u>(mp: 393-395 K), <u>4</u>(mp: 480-481 K) and <u>5</u>(mp: 440-443 K).

As has been known since 1927^3 the cyclization of some 1-aroyl-1-phenylhydrazones of β -ketoaldehydes in alkaline media yields 4-acyl pyrazoles. Accordingly, compound $\underline{2}$ could be readily produced from $\underline{1a}$ in NaOET/EtOH via double condensation. On dry heating we have found that $\underline{1a}$ produced a novel compound $\underline{3}$ by losing only one molecule of water.

The chemical formula of $\underline{3}$ (2-amino)-phenyl-[1,3,5-trimethyl-4-(1H)-pyrazolyl]-methanone could be inferred from mass spectra² [m/z (%) 229(100)M⁺, 137(23) C₇H₉N₂O, 120(35) C₇H₆NO, 56(3,3) C₃H₆N]. The fragment ions m/z 137 and 120 indicate that a C=O group forms a linkage between the phenyl and the hetero rings. It is worth noting that $\underline{3}$ could also be synthesized from 3-(2-nitro) -benzoyl-2,4-pentanedione⁴.

In order to avoid the undesirable conversions of $\underline{1a}$ (i.e. $\underline{1a} + \underline{2}$ ring closure and $\underline{1a} + \underline{3}$ reaction) we have attempted the synthesis of the nine-membered ring by boiling $\underline{1b}$ in NaOEt/EtOH and in dry benzene as well. Contrary to expectations, these procedures resulted, however, in a mixture⁵ of two isomeric products $\underline{4}$ and $\underline{5}$.

The structure of $\underline{4}$ [5-(2-acetylamino)-phenyl-1,3,4-trimethyl-1*H*-pyrazole] proposed on the basis of mass spectral data [m/z (%): 243(100)M⁺, 242(4,8), 228(9), 201(13), 200(28), 186(4,3), 159(7), 130(1,8)] was also proved by an independent synthesis⁶ while that of $\underline{5}$ deduced also from MS spectra [m/z (%): 243(29)M⁺, 228(36), 174(14) C₁₁H₁₂NO, 125(100) C₇H₁₃N₂, 124(60), 123(43), 119(70), 109(10)] had to be corroborated by X-ray analysis.

The crystal structure of 5 [3a,9a-dihydro-1,3,3a,9a-tetramethyl-4*H*-pyrazolo(3,4-*b*)quinolin-4-one] was solved in the orthorhombic space group P2₁2₁2₁ and refined with program *SHELX* to a final R of 0.072 for 1484 independent counter diffractometer data⁷. The bond distances (pm) and valency angles along with the atomic numbering⁸ are given in Fig. 1. As shown by the puckering parameters

 $(Q = 37.6 \text{ pm}, \Theta = 49.6^{\circ}, \varphi = 227^{\circ})^{9,10}$ the hetero ring of the quinolin-4-one molety assumes an almost perfect half-chair conformation (the lowest asymmetry parameter $^{11} \Delta C_2(C6-C11) = 2.5^{\circ}$) while the pyrazole ring (Q = 42.2 pm, $\varphi = 179^{\circ}$ at C(13) is of an envelope conformation with C(13) on the flap $[\Delta C_g(C13) = 2.3^{\circ}]$. The hetero ring junction is of *cis* configuration [torsion angle C(16)-C(4)-C(13)-C(17) = -44.8^{\circ}]. The methyl groups bound to N(1) and C(3) are *pseudoequatorial*. The symmetry related molecules are linked together by N(12)-H...N(2) hydrogen bond helices [N...N = 309.0, H...N = 204.6 pm, $RNH..N = 160.2^{\circ}$].

The mechanism of reaction $\underline{1a} \rightarrow \underline{3}$ may be explained by assuming an $\underline{\beta}$ type intermediate¹² which converts into $\underline{10}$ via 1,3-acyl migration. This reaction path, if R = H gives $\underline{3}$ by ring-opening, or the reaction terminates at $\underline{10}$ in case R = Me (i.e. $\underline{10} = \underline{5}$). But the formation of $\underline{4}$ cannot be explained by this reaction path. More attractive, therefore, is the hypothesis that in alkaline solution a common intermediate $\underline{\theta}$ (by which $\underline{1a}$ is readily converted into $\underline{2}$) may also undergo two types of dehydration if R = Me ($\underline{1b}$). The formation of $\underline{4}$ may then be attributed to dehydration at 9b followed by ring-opening. The somewhat less favourable dehydration at 4 accompanied by rearrangement may lead to $\underline{10} = \underline{5}$. This assumption seems to be supported by the fact that the electron-withdrawing substituents in position 5 of $\underline{1b}$ increased the yield of $\underline{5}$ type products. This substitution may induce deprotonation at 9b-OH of θ which hinders reaction into 4.

- 1. All tautomeric forms of the hydrazones are intended to be implied.
- 2. All compounds have correct analytical data; mp.'s are not corrected. Mass spectra were taken on a Varian MAT SM-1 instrument at 70 eV and R = 1250.

High resolution mass measurements were made at R = 10000 using PFK as reference standard.

- 3. K.v. Auwers and H. Mauss, J. Pract. Chem. <u>117</u>, 311 (1927).
- 4. J.D. Loudon and I. Wellings, J. Chem. Soc., 3470 (1960).
- 5. $\underline{4}$ and $\underline{5}$ were produced in NaOEt/EtOH in yields of 60% ($\underline{4}$) and 40% ($\underline{5}$). In dry benzene they were produced in rather poor yield.
- 6. 5-(2-Amino)-phenyl-1,3,4-trimethyl-1#-pyrazole <u>7</u> synthesised from 3-methyl-3-(2-nitro)--benzoyl-2,4-pentanedione <u>6</u> was identical with the hydrolysis product of <u>4</u>.
- Intensities were collected on a semi-automatic two-circle Stoe-Güttinger diffractometer using Ni-filtered CuK_α (λ=154.18 pm) radiation (cf. A. Kálmán, K. Simon, J. Schawart and G. Horváth, J. Chem. Soc., Perkin Trans. 2. 1849 (1974)). The lattice parameters, a = 976.6(6), b = 1077.0(1), c = 1271.0(2) pm [Z = 4, F(000) = 520] were refined from precession photographs.
- Listing of positional parameters for non-hydrogen and hydrogen atoms together with the anisotropic vibrational parameters for non-hydrogen atoms of <u>5</u> may be obtained from the Cambridge Crystallographic Data Centre, University Laboratory, Lensfield Road, Cambridge CB2 1EW, (England) [see *Tetrahedron Letters.*, 3081 (1978)].
- 9. D. Cremer and J.A. Pople, J. Amer. Chem. Soc., <u>97</u>, 1354 (1975).
- 10. J.C.A. Boeyens, J. Cryst. Mol. Struct. (1978) still in the press.
- 11. W.L. Duax, C.M. Weeks and D.C. Rohrers in *Topics in Stereochemistry* Vol. 9. edited by N.L. Allinger and E.L. Eliel, pp. 271-383, New York: John Wiley and Sons, 1976.
- Similar to the mechanism postulated for the thermal rearrangement of 2,4-diphenyl-2,3-benzodiazocin-1(2H)-one by N. Dennis, A.R. Katritzky, E. Lunt and M. Ramaiah, *Tetrahedron Letters*. 1569 (1976).

Fig. 1. A schematic view of the structure of 5 showing atomic numbering (the bare numbers are for carbon atoms unless indicated otherwise) bond distances (pm) and bond angles (°). E.s.d:s are numerically in the range of 0.3-0.5, for lengths (pm) and angles (°).